0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Сдать анализ на анализ крови на аминокислоты 12 показателей

Комплексный анализ крови на аминокислоты (13 показателей: Аланин, Аргинин, Аспарагиновая кислота, Цитруллин, Глутаминовая кислота, Глицин, Метионин, Орнитин, Фенилаланин, Тирозин, Валин, Лейцин/Изолейцин, Пролин)

Прием биоматериала по данному исследованию может быть отменен за 2-3 дня до официальных государственных праздников, в связи с технологической особенностью производства! Информацию уточняйте в контакт-центре.

ОБЩИЕ ПРАВИЛА ПОДГОТОВКИ К АНАЛИЗАМ КРОВИ

Для большинства исследований кровь рекомендуется сдавать утром натощак, это особенно важно, если проводится динамическое наблюдение за определенным показателем. Прием пищи может непосредственно влиять как на концентрацию исследуемых показателей, так и на физические свойства образца (повышенная мутность – липемия – после приема жирной пищи). В случае необходимости можно сдать кровь в течение дня после 2-4-часового голодания. Рекомендуется незадолго до взятия крови выпить 1-2 стакана негазированной воды, это поможет набрать необходимый для исследования объем крови, уменьшит вязкость крови и снизит вероятность образования сгустков в пробирке. Необходимо исключить физическое и эмоциональное перенапряжение, курение за 30 минут до исследования. Кровь для исследования берется из вены.

«Анализ крови на аминокислоты (32 показателя)»

Цена: 3700 руб.
Материал: Кровь
Время забора: 7:00-12:00 сб. 7:00-11:00
Выдача результатов: до 8 рабочих дней

Условия подготовки к анализам:

Анализ крови на аминокислоты (32 показателя)

Аминокислоты – органические вещества, содержащие карбоксильные и аминные группы. Известно около 100 аминокислот, но в синтезе белка участвуют только 20. Данные аминокислоты называются «протеиногенными» (стандартными) и по возможности синтеза в организме классифицируются на заменимые и незаменимые. К незаменимым аминокислотам относятся аргинин, валин, гистидин, изолейцин, лейцин, лизин, метионин, треонин, триптофан, фенилаланин. Заменимыми аминокислотами являются аланин, аспарагин, аспартат, глицин, глутамат, глутамин, пролин, серин, тирозин, цистеин. Протеиногенные и нестандартные аминокислоты, их метаболиты участвуют в различных обменных процессах в организме. Дефект ферментов на различных этапах трансформации веществ может приводить к накоплению аминокислот и их продуктов превращения, оказывать отрицательное влияние на состояние организма.

Нарушения метаболизма аминокислот могут быть первичными (врожденными) или вторичными (приобретенными). Первичные аминоацидопатии обычно наследуются аутосомно-рецессивно или сцеплено с Х-хромосомой и проявляются в раннем детском возрасте. Заболевания развиваются вследствие генетически обусловленного дефицита ферментов и/или транспортных белков, связанных с метаболизмом определенных аминокислот. В литературе описано более 30 вариантов аминоацидопатий. Клинические проявления могут варьироваться от легких доброкачественных нарушений до тяжелого метаболического ацидоза или алкалоза, рвоты, задержки умственного развития и роста, летаргии, комы, синдрома внезапной смерти новорожденных, остеомаляции и остеопороза. Вторичные нарушения обмена аминокислот могут быть связаны с заболеваниями печени, желудочно-кишечного тракта (например, язвенный колит, болезнь Крона), почек (например, синдром Фанкони), недостаточным или неадекватным питанием, новообразованиями. Ранняя диагностика и своевременное лечение позволяют предупредить развитие и прогрессирование симптомов заболевания.

Данное исследование позволяет комплексно определить концентрацию в крови стандартных и непротеиногенных аминокислот, их производных и оценить состояние аминокислотного обмена.

Аланин (ALA) способен синтезироваться в организме человека из других аминокислот. Он участвует в процессе глюконеогенеза в печени. По некоторым данным, повышенное содержание аланина в крови ассоциировано с повышением артериального давления, холестерина, индекса массы тела, АЛТ.

Аргинин (ARG) в зависимости от возраста и функционального состояния организма относится к полузаменимым аминокислотам. В связи с незрелостью ферментных систем недоношенные дети не способны к его образованию, поэтому нуждаются во внешнем источнике поступления данного вещества. Повышение потребности в аргинине возникает при стрессе, оперативном лечении, травмах. Данная аминокислота участвует в делении клеток, заживлении ран, высвобождении гормонов, образовании окиси азота и мочевины.

Аспарагиновая кислота (ASP) может образовываться из цитруллина и орнитина и являться предшественником некоторых других аминокислот. Аспарагиновая кислота и аспарагин (ASN) участвуют в глюконеогенезе, синтезе пуриновых основ, азотистом обмене, функции АТФ-синтетазы. В нервной системе аспарагин играет роль нейротрансмиттера.

Цитруллин (CIT) может образовываться из орнитина или аргинина и является важным компонентом цикла образования мочевины в печени (орнитинового цикла). Цитруллин входит в состав филаггрина, гистонов и играет роль в аутоиммунном воспалении при ревматоидном артрите.

Глутаминовая кислота (GLU) – заменимая аминокислота, которая имеет большое значение в азотистом обмене. Свободная глутаминовая кислота используется в пищевой промышленности в качестве усилителя вкуса. Глутаминовая кислота и глутамат являются важными возбуждающими нейротрансмиттерами в нервной системе. Снижение высвобождения глутамата отмечается при классической фенилкетонурии.

Глицин (GLY) является заменимой аминокислотой, которая может образовываться из серина под действием пиридоксина (витамина В6). Он принимает участие в синтезе белков, порфиринов, пуринов и является тормозным медиатором в центральной нервной системе.

Метионин (MET) – незаменимая аминокислота, максимальное содержание которой определяется в яйцах, кунжуте, злаках, мясе, рыбе. Из него может образовываться гомоцистеин. Дефицит метионина приводит к развитию стеатогепатита, анемии.

Орнитин (ORN) не кодируется человеческим ДНК и не включается в синтез белка. Данная аминокислота образуется из аргинина и играет ключевую роль в синтезе мочевины и выведении аммиака из организма. Содержащие орнитин препараты применяются для лечения цирроза, астенического синдрома.

Фенилаланин (PHE) – незаменимая аминокислота, которая является предшественником тирозина, катехоламинов, меланина. Генетический дефект метаболизма фенилаланина приводит к накоплению аминокислоты и ее токсических продуктов и развитию аминоацидопатии – фенилкетонурии. Заболевание ассоциировано с нарушениями умственного и физического развития, судорогами.

Тирозин (TYR) поступает в организм с пищей или синтезируется из фенилаланина. Является предшественником нейротрансмиттеров (дофамина, норадреналина, адреналина) и пигмента меланина. При генетических нарушениях метаболизма тирозина возникает тирозинемия, которая сопровождается повреждением печени, почек и периферической нейропатией. Важное дифференциально диагностическое значение имеет отсутствие повышения уровня тирозина в крови при фенилкетонурии, в отличие от некоторых других патологических состояний.

Валин (VAL), лейцин (LEU) и изолейцин (ILEU) – незаменимые аминокислоты, которые являются важными источниками энергии в мышечных клетках. При ферментопатиях, которые нарушают их метаболизм и приводят к накоплению данных аминокислот (особенно лейцина), возникает «болезнь кленового сиропа» (лейциноз). Патогномоничным признаком данного заболевания служит сладкий запах мочи, который напоминает кленовый сироп. Симптомы аминоацидопатии возникают с раннего возраста и включают рвоту, обезвоживание, летаргию, гипотонию, гипогликемию, судороги и опистотонус, кетоацидоз и патологию центральной нервной системы. Заболевание нередко заканчивается летально.

Читать еще:  Сдать анализ на аллерген f80 лобстер омар ige

Гидроксипролин (HPRO) образовывается при гидроксилировании пролина под воздействием витамина С. Данная аминокислота обеспечивает стабильность коллагена и является главной его составляющей. При дефиците витамина С нарушается синтез гидроксипролина, снижается стабильность коллагена и возникает повреждение слизистых оболочек – симптомы цинги.

Серин (SER) входит в состав практически всех белков и участвует в формировании активных центров многих ферментов организма (например, трипсина, эстераз) и синтезе других заменимых аминоксилот.

Глутамин (GLN) является частично заменимой аминокислотой. Потребность в нем значительно возрастает при травмах, некоторых желудочно-кишечных заболеваниях, интенсивных физических нагрузках. Он принимает участие в азотистом обмене, синтезе пуринов, регуляции кислотно-щелочного баланса, выполняет нейромедиаторную функцию. Данная аминокислота ускоряет процессы заживления и восстановления после травм и операций.

Гамма-аминомасляная кислота (GABA) синтезируется из глутамина и является важнейшим тормозным нейромедиатором. Препараты ГАМК используются для лечения различных неврологических нарушений.

Бета-аминоизомасляная кислота (BAIBA) является продуктом метаболизма тимина и валина. Повышение ее уровня в крови наблюдается при дефиците бета-аминоизобутират-пируват-аминотрансферазы, голодании, отравлении свинцом, лучевой болезни и некоторых новообразованиях.

Альфа-аминомасляная кислота (AABA) – предшественник синтеза офтальмовой кислоты, являющейся аналогом глутатиона в хрусталике глаза.

Бета-аланин (BALA), в отличие от альфа-аланина, не участвует в синтезе белков в организме. Данная аминокислота входит в состав карнозина, который в качестве буферной системы препятствует накоплению кислот в мышцах во время физических нагрузок, уменьшает мышечную боль после тренировок, ускоряет процессы восстановления после травм.

Гистидин (HIS) – незаменимая аминокислота, которая является предшественником гистамина, входит в состав активных центров многих ферментов, содержится в гемоглобине, способствует восстановлению тканей. При редком генетическом дефекте гистидазы возникает гистидинемия, которая может проявиться гиперактивностью, задержкой развития, трудностями при обучении и в некоторых случаях умственной отсталостью.

Треонин (THRE) – эссенциальная аминокислота, необходимая для синтеза белка и образования других аминокислот.

1-метилгистидин (1MHIS) является производным ансерина. Концентрация 1-метилгистидина в крови и моче коррелирует с употреблением мясной пищи и возрастает при дефиците витамина Е. Повышение уровня данного метаболита возникает при дефиците карозиназы в крови и наблюдается при болезни Паркинсона, рассеянном склерозе.

3-метилгистидин (3MHIS) является продуктом метаболизма актина и миозина и отражает уровень распада белков в мышечной ткани.

Пролин (PRO) синтезируется в организме из глутамата. Гиперпролинемия вследствие генетического дефекта ферментов или на фоне неадекватного питания, повышенного содержания молочной кислоты в крови, заболеваний печени может приводить к судорогам, умственной усталости и другой неврологической патологии.

Лизин (LYS) – эссенциальная аминокислота, которая участвует в формировании коллагена и восстановлении тканей, функции иммунной системы, синтезе белков, ферментов и гормонов. Недостаточность глицина в организме приводит к астении, снижении памяти и нарушению репродуктивных функций.

Альфа-аминоадипиновая кислота (AAA) – промежуточный продукт метаболизма лизина.

Цистеин (CYS) является незаменимой аминокислотой для детей, пожилых и людей с нарушением всасывания питательных веществ. У здоровых людей данная аминокислота синтезируется из метионина. Цистеин входит в состав кератинов волос, ногтей, участвует в формировании коллагена, является антиоксидантом, предшественником глутатиона и защищает печень от повреждающего действия метаболитов алкоголя. Цистин является димерной молекулой цистеина. При генетическом дефекте транспорта цистина в почечных канальцах и стенках кишечника возникает цистинурия, которая приводит к формированию камней в почках, мочеточниках и мочевом пузыре.

Цистатионин (CYST) – промежуточный продукт обмена цистеина при его синтезе из гомоцистеина. При наследственном дефиците фермента цистатионазы или приобретенном гиповитаминозе В6 уровень цистатионина в крови и моче повышается. Данное состояние описывается как цистатионинурия, которая протекает доброкачественно без явных патологических признаков, однако в редких случаях может проявляться дефицитом интеллекта.

Цистеиновая кислота (CYSA) образовывается при окислении цистеина и является предшественником таурина.

Таурин (TAU) синтезируется из цистеина и, в отличие от аминокислот, является сульфокислотой, содержащей сульфогруппу вместо карбоксильной группы. Таурин входит в состав желчи, участвует в эмульгации жиров, является тормозным нейромедиатором, улучшает репаративные и энергетические процессы, обладает кардиотоническими и гипотензивными свойствами.

В спортивном питании аминокислоты и протеины нашли широкое распространение и используются для увеличения мышечной массы. У вегетарианцев же в связи с отсутствием в рационе животного белка может возникнуть дефицит некоторых незаменимых аминокислот. Данное исследование позволяет оценить адекватность таких видов питания и при необходимости провести их коррекцию.

Аминокислоты в плазме крови: скрининговое полуколичественное исследование для лиц старше 18 лет

Биоматериал: Плазма крови c ЭДТА

Взятие биоматериала: 190 руб.

Срок исполнения: 4 дн

Аминокислоты в крови являются особыми структурными химическими единицами, которые образуют белки. Многие из них вырабатываются в печени, но некоторые не могут быть синтезированы, поэтому их необходимо восполнять с пищей. Помимо того, что они участвуют в образовании белков, входящих в состав тканей и органов организма человека, некоторые из них:

  • Нужны в метаболизме, иммунных и ферментативных реакциях большинства биологических веществ, процессах детоксикации, а также они выполняют регуляторную функцию и другие.
  • Непосредственно снабжают мышечные ткани энергией.
  • Являются нейромедиаторами (биологически активными компонентами, при помощи которых от нервной клетки осуществляется передача электрического импульса) или их предшественниками.
  • Способствуют тому, что минералы и витамины в полной мере справляются со своими функциями.

Если организм человека испытывает нехватку одной из аминокислот, то начинаются серьезные проблемы, которые приводят к депрессии, ожирению, почечной недостаточности, проблемам с пищеварением и т.д., вплоть до замедления роста и развития. В особой группе риска находятся спортсмены, поддерживающие положительный азотный баланс при помощи анаболических препаратов и спортивного питания. В силу исключения из рациона многих необходимых продуктов туда попадают также вегетарианцы, веганы и худеющие при помощи диет специфического характера.

Читать еще:  Сдать анализ на аллерген c100 прилокаинцитанест ige

Анализ на аминокислоты в крови и моче признан незаменимым способом оценки и определения достаточного их содержания, степени усвоения пищевого белка, а также метаболического дисбаланса, лежащего в основе хронических заболеваний печени, почек, дыхательных органов, сердечно-сосудистой системы.

Функции основных аминокислот

Аминокислоты включают в себя 12 показателей: аргинин, аланин, аспарагиновую и глутаминовую кислоты, цитруллин, метионин, глицин, орнитин, валин, фенилаланин, тирозин, отношение – лейцин/изолейцин.

  • Аланин участвует в нормализации метаболизма углеводов и является составной частью пантеноловой кислоты (витамин В5) и коэнзима А, который производит необходимую энергию для мышечной деятельности. Он замедляет рост новообразований, в том числе злокачественных, за счет стимуляции иммунной системы. Увеличивает размер и улучшает активность вилочковой железы, которая вырабатывает Т-лимфоциты (защищают организм от опухолевых клеток и сигнализируют о начале синтеза антител), а также улучшает детоксикационные процессы в печени (обезвреживание аммиака).
  • Аргинин — важнейший компонент в обмене веществ мышечной ткани. Он помогает в поддержании оптимального азотного баланса, так как участвует в обезвреживании и транспортировке избыточного азота в организме.
  • При помощи аспарагин- амид аспарагиновой кислоты образуются связи в токсическом аммиаке. Она находится в свободном виде в составе белков и играет особую роль в обмене азотистых веществ, образовании мочевины и пиримидиновых оснований. Оказывает иммуномодулирующее биологическое действие, стабилизирует баланс торможения и возбуждения в ЦНС, повышает выносливость и др.
  • Глутаминовая кислота — это передающий импульсы в ЦНС нейромедиатор. Она улучшает проникновение кальция через гематоэнцефалический барьер и может использоваться клетками головного мозга как источник энергии, поскольку имеет важное значение в процессе углеводного обмена. Она также отнимает атомы азота в процессе образования глутамина, тем самым обезвреживая аммиак.
  • Цитруллин не входит в состав белков. Он вырабатывается в печени в процессе превращения аммиака в мочевину и биосинтеза аргинина в качестве побочного продукта. При патологически повышенной концентрации оказывает токсическое воздействие. Ребенок с врожденным недостатком одного из ферментов, предназначенных для химического расщепления белков в моче, плохо развивается. У него может наблюдаться ярко выраженная задержка умственного развития, поскольку вследствие нарушений в крови происходит накопление аминокислоты цитруллина и аммиака.
  • Глицин снижает дегенерацию мышечной ткани, поскольку является источником вещества, содержащегося в мышцах и используемого при синтезе ДНК и РНК — креатина. Выполняет функцию тормозного нейромедиатора и предотвращает эпилептические судороги. Он служит для синтеза желчных и нуклеиновых кислот, а также заменимых аминокислот.
  • Метионин принимает участие в переработке и устранении жировых отложений в стенках артерий и в печени. Синтез цистеина и таурина зависит от количества метионина в организме. Он улучшает пищеварение, защищает от воздействия радиации, обеспечивает детоксикационные процессы, уменьшает мышечную слабость, полезен при химической аллергии и остеопорозе.
  • Орнитин помогает высвобождению гормона роста, способствующего сжиганию жиров. Такой эффект усиливается с применением орнитина в совокупности с карнитином и аргинином. Он также необходим для работы иммунной системы, участвует в восстановлении печеночных клеток и детоксикационных процессах.
  • Фенилаланин превращается в тирозин, который используется в синтезе двух основных нейромедиаторов: норадреналина и допамина. Поэтому он оказывает влияние на настроение, улучшает память, уменьшает боль и повышает способность к обучению, подавляет чрезмерный аппетит. Его применяют в лечении артрита, болей при менструации, депрессии, ожирения, мигрени, болезни Паркинсона.
  • Тирозин — является предшественником нейромедиаторов дофамина и норадреналина, и очень важен при обмене фенилаланина. Он участвует в регуляции настроения; его дефицит приводит к нехватке норадреналина, что выражается в депрессивном состоянии. Тирозин способствует уменьшению жировых отложений, снижает аппетит и улучшает выработку мелатонина (он борется со старением и отвечает за здоровый сон), функции эндокринной системы, надпочечников и гипофиза. Тиреоидные гормоны образуются при соединением с тирозином атомов йода.
  • Валин оказывает стимулирующие действие и служит для восстановления целостности тканей, метаболизма в мышцах и поддержания нормального обмена азота в организме. Относится к группе разветвленных аминокислот и используется мышцами в качестве источника энергии. Его также часто применяют при выраженной нехватке аминокислот, возникшей в результате привыкания к определенным препаратам. Его переизбыток может привести к таким симптомам, как ощущение мурашек на коже (парестезия) и даже к галлюцинациям.
  • Изолейцин — одна из трех разветвленных аминокислот, которая служит для синтеза гемоглобина. Она помогает в регуляции и стабилизации сахара в крови, а также поддерживает энергетические процессы. Метаболизм изолейцина происходит в мышечной ткани. Он нужен при многих психических заболеваниях, нехватка этой аминокислоты приводит к появлению схожих с гипогликемией симптомов.
  • Лейцин также относится к группе разветвленных аминокислот. В совокупности они помогают защищать мышечные ткани и обеспечивают энергией, а также способствуют восстановлению, костей, мышц и кожи. Именно поэтому их рекомендуют принимать в послеоперационный период или после различных травм. Лейцин немного понижает уровень сахара и стимулирует выделение гормона роста. Его переизбыток может увеличить содержание аммиака в организме.

Причины и последствия нарушений концентрации аминокислот в крови

Исследования врачей показали, что нехватка аминокислот приводит к недостаточности всех синтетических процессов в человеческом организме. Быстрообновляющиеся системы (гуморальная и половая, костный мозг и др.) страдают в особенности.

Наследственные нарушения, характеризующиеся изменением концентрации аминокислоты в крови и ацилкарнитинов представляют собой наиболее многочисленную гетерогенную группу болезней метаболизма (тирозинемия, ФКУ, гистидинемия, гиперглицинемия и др.). Значения точной лабораторной диагностики этих заболеваний определяется тем, что часто их формы имеют схожую клиническую картину, что усложняет процесс выявления болезни. Избыточное накопление и повышение уровня многих аминокислот имеет токсическое воздействие.

Читать еще:  Сдать анализ на d димер

Сдать анализ на Анализ крови на аминокислоты (12 показателей)

Аминокислоты – важные органические вещества, в структуре которых находятся карбоксильная и аминная группы. Комплексное исследование, определяющее содержание аминокислот и их производных в крови позволяет выявить врожденные и приобретенные нарушения аминокислотного обмена.

Стоимость услуги

Как подготовиться к анализу

Расшифровка анализов

  • Аланин (ALA):

Возраст

Референсные значения

83 — 710 мкмоль/л

1 месяц – 2 года

119 — 523 мкмоль/л

157 — 543 мкмоль/л

177 — 583 мкмоль/л

  • Аргинин (ARG):

Возраст

Референсные значения

1 месяц – 2 года

10 — 128 мкмоль/л

15 — 140 мкмоль/л

  • Аспарагиновая кислота (ASP):

Возраст

Референсные значения

1 месяц – 2 года

  • Цитруллин (CIT):

Возраст

Референсные значения

1 месяц – 2 года

  • Глутаминовая кислота (GLU):

Возраст

Референсные значения

105 — 694 мкмоль/л

1 месяц – 2 года

107 — 459 мкмоль/л

100 — 535 мкмоль/л

92 — 497 мкмоль/л

  • Глицин (GLY)

Возраст

Референсные значения

133 — 409 мкмоль/л

1 месяц – 2 года

103 — 386 мкмоль/л

138 — 349 мкмоль/л

122 — 422 мкмоль/л

  • Метионин (MET)

Возраст

Референсные значения

1 месяц – 2 года

  • Орнитин (ORN)

Возраст

Референсные значения

83 — 710 мкмоль/л

1 месяц – 2 года

119 — 523 мкмоль/л

157 — 543 мкмоль/л

177 — 583 мкмоль/л

  • Фенилаланин (PHE)

Возраст

Референсные значения

1 месяц – 2 года

  • Тирозин (TYR)

Возраст

Референсные значения

33 — 160 мкмоль/л

1 месяц – 2 года

24 — 125 мкмоль/л

23 — 108 мкмоль/л

  • Валин (VAL)

Возраст

Референсные значения

57 — 250 мкмоль/л

1 месяц – 2 года

64 — 354 мкмоль/л

85 — 307 мкмоль/л

92 — 313 мкмоль/л

  • Лейцин (LEU)

Возраст

Референсные значения

45 — 100 мкмоль/л

1 месяц – 2 года

110 — 150 мкмоль/л

50 — 190 мкмоль/л

74 — 196 мкмоль/л

  • Изолейцин (ILEU)

Возраст

Референсные значения

1 месяц – 2 года

66 — 102 мкмоль/л

35 — 104 мкмоль/л

  • Гидроксипролин (HPRO)

Возраст

Референсные значения

1 месяц – 2 года

  • Серин (SER)

Возраст

Референсные значения

95 — 178 мкмоль/л

1 месяц – 2 года

98 — 146 мкмоль/л

90 — 137 мкмоль/л

60 — 172 мкмоль/л

  • Аспарагин (ASN)

Возраст

Референсные значения

1 месяц – 2 года

  • Alpha-аминоадипиновая к-та (AAA)

Возраст

Референсные значения

1 месяц – 2 года

  • Глутамин (GLN)

Возраст

Референсные значения

650 — 1150 мкмоль/л

1 месяц – 2 года

530 — 670 мкмоль/л

400 — 680 мкмоль/л

372 — 876 мкмоль/л

  • Beta-аланин (BALA): 0 — 5 мкмоль/л.
  • Таурин (TAU)

Возраст

Референсные значения

40 — 166 мкмоль/л

1 месяц – 2 года

40 — 166 мкмоль/л

29 — 136 мкмоль/л

29 — 136 мкмоль/л

  • Гистидин (HIS)

Возраст

Референсные значения

1 месяц – 2 года

57 — 114 мкмоль/л

57 — 114 мкмоль/л

  • Треонин (THRE)

Возраст

Референсные значения

150 — 275 мкмоль/л

1 месяц – 2 года

110 — 166 мкмоль/л

94 — 195 мкмоль/л

73 — 216 мкмоль/л

  • 1-метилгистидин (1MHIS)

Возраст

Референсные значения

1 месяц – 2 года

  • 3-метилгистидин (3MHIS)

Возраст

Референсные значения

1 месяц – 2 года

  • Gamma-аминомасляная к-та (GABA)

Возраст

Референсные значения

1 месяц – 2 года

  • Beta-аминоизомасляная к-та (BAIBA)

Возраст

Референсные значения

1 месяц – 2 года

  • Alpha-аминомасляная к-та (AABA): 0 — 40 мкмоль/л.
  • Пролин (PRO)

Возраст

Референсные значения

160 — 305 мкмоль/л

1 месяц – 2 года

130 — 258 мкмоль/л

108 — 228 мкмоль/л

99 — 363 мкмоль/л

  • Цистатионин (CYST): 0 — 0,3 мкмоль/л.
  • Лизин (LYS)

Возраст

Референсные значения

130 — 250 мкмоль/л

1 месяц – 2 года

131 — 195 мкмоль/л

156 — 220 мкмоль/л

120 — 318 мкмоль/л

  • Цистин (CYS)

Возраст

Референсные значения

78 — 115 мкмоль/л

1 месяц – 2 года

  • Цистеиновая кислота (CYSA): 0.

Интерпретация результатов осуществляется с учетом возраста, особенностей питания, клинического состояния и других лабораторных данных.

Увеличение общего уровня аминокислот в крови возможно при:

  • эклампсии;
  • нарушении толерантности к фруктозе;
  • диабетическом кетоацидозе;
  • почечной недостаточности;
  • синдроме Рейе.

Снижение общего уровня аминокислот в крови может возникнуть при:

  • гиперфункции коры надпочечников;
  • лихорадке;
  • болезни Хартнупа;
  • хорее Хантингтона;
  • неадекватном питании, голодании (квашиоркоре);
  • синдроме мальабсорбции при тяжелых заболеваниях желудочно-кишечного тракта;
  • гиповитаминозе;
  • нефротическом синдроме;
  • лихорадке паппатачи (москитной, флеботомной);
  • ревматоидном артрите.

Повышение аргинина, глутамина – дефицит аргиназы.

Повышение аргининсукцината, глутамина – дефицит аргиносукциназы.

Повышение цитруллина, глутамина – цитруллинемия.

Повышение цистина, орнитина, лизина – цистинурия.

Повышение валина, лейцина, изолейцина – болезнь кленового сиропа (лейциноз).

Повышение фенилаланина – фенилкетонурия.

Повышение тирозина – тирозинемия.

Повышение глутамина – гипераммониемия.

Повышение аланина – лактацидоз (молочнокислый ацидоз).

Повышение глицина – органические ацидурии.

Повышение тирозина – транзиторная тирозинемия у новорожденных.

Что может влиять на результат?

  • Различные лекарственные препараты, назначенные как ребенку, так и матери перед родами и во время лактации, могут влиять на результат исследования.
  • Аминокислотный состав и его уровень в крови зависит от питания.

Вам необходимо сдать этот анализ? Ознакомьтесь с адресами лабораторий, где его можно провести и их графиком работы. Будьте внимательны при подготовке к анализу. Следуйте индивидуальным рекомендациям для того, чтобы показатели были максимально достоверными.

После получения результатов вы можете определить нормы своих показателей через нашу форму расшифровки анализов. Мы также просим вас оставить на сайте отзыв о работе той лаборатории или диагностического центра, в котором вы сдали анализы. Это очень поможет другим пользователям. Спасибо.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector